Noncommutative Enumeration in Graded Posets

نویسندگان

  • LOUIS J. BILLERA
  • NIANDONG LIU
چکیده

We define a noncommutative algebra of flag-enumeration functionals on graded posets and show it to be isomorphic to the free associative algebra on countably many generators. Restricted to Eulerian posets, this ring has a particularly appealing presentation with kernel generated by Euler relations. A consequence is that even on Eulerian posets, the algebra is free, with generators corresponding to odd jumps in flags. In this context, the coefficients of the cd-index provide a graded basis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cobweb posets as noncommutative prefabs

A class of new type graded infinite posets with minimal element is introduced. These so called cobweb posets proposed recently by the present author constitute a wide range of new noncommutative and nonassociative prefab combinatorial schemes‘ examples with characteristic graded sub-posets as primes. These schemes are defined here via relaxing commutativity and associativity requirements impose...

متن کامل

Euler Enumeration and Beyond

This paper surveys recent results for flag enumeration of polytopes, Bruhat graphs, balanced digraphs, Whitney stratified spaces and quasi-graded posets.

متن کامل

Structure and Enumeration of (3 + 1)-free Posets

A poset is (3 + 1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets play a central role in the (3 + 1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a f...

متن کامل

Linear Inequalities for Flags in Graded Posets

The closure of the convex cone generated by all flag f -vectors of graded posets is shown to be polyhedral. In particular, we give the facet inequalities to the polar cone of all nonnegative chain-enumeration functionals on this class of posets. These are in one-to-one correspondence with antichains of intervals on the set of ranks and thus are counted by Catalan numbers. Furthermore, we prove ...

متن کامل

Structure and enumeration of ( 3 + 1 ) - free posets ( extended

A poset is (3 + 1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets are the subject of the (3 + 1)-free conjecture of Stanley and Stembridge. Recently, Lewis and Zhang have enumerated graded (3+1)-free posets, but until now the general enumeration problem has remained open. We enumerate all (3 + 1)-free posets by giving a decomposit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000